ENCRYPTION OF STORED DATA IN NETWORKS: ANALYSIS
OF A TWEAKED BLOCK CIPHER

IAN F. BLAKE,2, CYRIL GUYOT;, CLEMENT KENT; AND V. KUMAR MURTY7,2

To Yufeng Ding.

ABSTRACT. Although encryption can protect the confidentiality of stored data,
attacks on storage networks allow modes of use of oracles which render some
ciphers weak. Some of these weaknesses are described, and potential solutions
in the form of two classes of secure tweakable block ciphers are proposed. One
class may be favored in some hardware implementations, while the second
is preferred for software and will be competitive in some hardware solutions.
These ciphers are candidates for standardization as IEEE/ANSI secure block
storage ciphers. We also present theoretical analysis of the security of tweak-
able block ciphers which is a slight refinement of the work of Liskov, Rivest
and Wagner [14].

1. INTRODUCTION

Although encryption has long been used to protect the confidentiality of trans-
mitted data (data in transit), its use to protect stored data (data at rest) has been
more limited, due in part to the perceived high cost of encrypting large amounts
of data and in part to the lack of standards for such encryption. The progress of
Moore’s Law has now rendered encryption cheap enough that its use to protect
terabytes of data at rest is now practical. However, the lack of standards, and of
rigorous analysis of weaknesses in common storage environments, remains a barrier
to widespread adoption of storage encryption.

A number of storage systems manipulate data at the sector level, rather than
at the file level. There are challenges to providing confidentiality and resistance
to data corruption which are harder to meet when the unit of work is the sector,
rather than the file, and when existing storage systems must be used. For instance,
a sector-level encryptor cannot add hashes, signatures, or in any other way expand
the space occupied by the encrypted data. Thus, strengths of some existing file-level
encryption systems ([3], [11]) do not carry over to the sector level.

Recently, the IEEE formed the Security in Storage Working Group with a goal
of proposing standards for encryption of block data ([15],[2]). Analysis of proposed
ciphers has begun [13] and has revealed interesting weaknesses. A number of these
are summarized in this paper. There is an urgent need for sector-level cipher
systems which are cryptographically strong and yet are feasible to implement given
today’s hardware and software.

1 Kasten Chase Applied Research.
2 University of Toronto.

2 IAN F. BLAKE, CYRIL GUYOT, CLEMENT KENT AND V. KUMAR MURTY

Two classes of tweakable block ciphers are proven to have certain properties in the
paper of Liskov, Rivest, and Wagner [14]. In this paper we note that only a subset
of one of these classes resists attacks in the networked storage environment, and we
present data on the relative efficiency of software and hardware implementations of
the two classes. Members of either class may be suitable for an IEEE standard for
sector-level encryption; characteristics of the operating environment may determine
the choice between the two.

We also prove a result about the security of tweakable block ciphers which is a
slight refinement of [14], Theorem 2.

2. ATTACKS ON DATA IN STORAGE NETWORKS

The analysis in this paper focuses on data in Storage Area Networks, or SANs.
These networks grew as a way of providing high throughput (currently 2Gb/sec per
channel) movement of data encapsulated as SCSI commands and payloads through
a switched network which provides high reliability and quality of service guarantees
[5]. They are used as a means of decoupling server computers from their disk and
tape storage devices. This allows great flexibility in adding, sharing, and managing
storage in large data centers, but it creates new modes of attack.

In a switched network all servers can potentially access all storage devices. Var-
ious means of limiting this access exist, such as zoning and LUN masking [4], [6],
but a determined attacker can sometimes defeat these measures. A typical scenario
is when an attacker has elevated privileges on a server that give him raw access
to the storage devices; that is to say, the ability to read and write sectors on the
storage device without mediation through a file system.

The most destructive short term use of such raw access is a Denial of Service
attack in which large quantities of data are destroyed or corrupted. Annoying as
such an attack may be, large SAN systems typically mirror and back up data with
multiply redundant systems, so it is not too hard to recover data from before the
time of a destructive DOS attack. In addition such attacks are likely to be noticed
promptly as applications fail. A longer term solution to such attacks relies on strong
authentication of storage users by the storage devices themselves and is beyond the
scope of this paper (see [1], [16]).

A more subtle and more dangerous attack is to steal high-value data (topical
examples being the theft of customer credit card numbers [9] or bank account PINs
[7]). Alternatively, the stored data may be modified in some way advantageous
to the attacker (e.g. by changing a salary field in a human resources database).
Encryption of the stored data is commonly regarded as an appropriate protection
of such confidential data. However, not all encryption systems do provide this
protection against certain raw mode attacks.

Some of the simplest modes, such as ECB mode, are trivially vulnerable to
dictionary attacks. Others, such as CTR mode, allow the attacker to observe
changes in the ciphertext and deduce changes in plaintext. Recall that, given a
counter ¢ (based for instance on sector and cipherblock number and unique over
the range of sectors on that storage device), the ciphertext is given as

(1) Ci=FErg(i)® P.

ENCRYPTION OF STORED DATA IN NETWORKS 3

Later, new plaintext P’ is written to the same location. Then the attacker forms

(2) Ci® C, =P aP.

This is a very large advantage to the attacker for very small effort. In addition, if
the plaintext at a location ¢ is known at one time, the value Fk (i) is immediately
derived, exposing all future data written to that location.

Other cipher modes are stronger than ECB and CTR, but are still open to
other attacks. These attacks fall into two groups: malleability, and copy and paste
attacks.

2.1. Malleability. If an attacker is able to change the ciphertext in a sector to
achieve a desired effect in the decrypted plaintext, (such as a pay raise), the cipher
may be called malleable. A nonmalleable cipher is one in which an attacker who
lacks the key for the cipher has as probability € of achieving the desired plaintext
change through changing ciphertext, of same order of magnitude as the probability
of guessing the plaintext given the ciphertext.

At the level of a single cipherblock, any strong symmetric cipher such as AES-
128 is nonmalleable. However, at the sector level, malleability may arise. For
instance, suppose that the attacker knows his salary is stored in cipherblock i and
the company president’s in cipherblock j . (Such knowledge may be deducible from
file or database system structures or from traffic analysis). Simply transposing the
two cipherblocks on the disk achieves a considerable pay increase in most cases.

One approach to preventing data translocation attacks is to encrypt each sector
of data using an iterative mode such as CBC mode, and to use a unique IV (initial-
ization vector) based on the sector number. This defeats translocation both within
and between sectors, but leaves open another malleability attack.

Recall that in CBC mode we have:

(3) CiJrl = EK(CZ D PiJrl)-

where C; and P; are ciphertext and plaintext for cipherblock i, and Cy = IV.
If the attacker knows his salary is in cipherblock ¢ 4+ 1, and that flipping bit b in
the plaintext will raise his salary by 2°, he will flip bit b in C;, e.g.

(4) c =2 @

A decrypt of C;11 now gives the desired result, although decrypt of C] yields
pseudorandom text.

In order to forestall such elementary attacks, Hughes [12] asked whether sector
nonmalleable ciphers could be defined, such that an attacker’s change to any of
the ciphertexts of the sector has a probability less than e of yielding a desired
plaintext in any location within the decrypted sector. Hughes has also stated a
stronger version in which, with probability 1 — e the decrypted plaintext of each
cipherblock of the sector is indistinguishable from pseudorandom text. That is to
say, almost any change to the encrypted sector results in complete gibberish in the
entire decrypted sector.

4 IAN F. BLAKE, CYRIL GUYOT, CLEMENT KENT AND V. KUMAR MURTY

In response to this, Halevi and Rogaway [?] have proposed a tweakable sector-
level cipher which is thought to be sector nonmalleable. This property is achieved
at some cost in efficiency of the resulting cipher.

Sector nonmalleable ciphers provide to disk sector encryption systems an ana-
logue to the integrity properties of systems which add a signed hash to stored data,
without requiring extra storage space. Replay attacks, in which an old ciphertext
for a sector replaces newer ciphertext, are not prevented however.

2.2. Copy and Paste. A second class of attacks may be called copy and paste
attacks. In these attacks, ciphertext is copied from one location, possibly modified,
and pasted into a new location. In some attacks, the goal is to decipher the data,
in others it is to make a known change to the data.

A typical environment for copy and paste attacks is a SAN with two servers.
Server 1 is well protected by normal security procedures. On server 1 the attacker
is an ordinary user whose access to the server’s data is restricted by the operating
and file systems’ access controls. The attacker wishes to decipher or modify data
belonging to another user, which he cannot normally see or change. The attacker
has elevated privileges on server 2 which have allowed him to gain raw mode access
through the SAN to all encrypted data on Server 1.

The data on Server 1 is protected by an encryption/decryption oracle which
grants its services only to legitimate requests from server 1. In most attacks we
assume the attacker has legitimate access to at least one sector S4 from the data
for Server 1, and so can use the oracle for that sector.

A simple example of a copy and paste attack allows the attacker to decipher
the first cipherblock of any sector Sp encrypted with CBC mode with a known IV
function. Note that since we are assuming the cipher system has no extra space in
which to save additional parameters such as a random IV for each sector, the IV
must be some reproducible function IV = F(B). If the attacker knows F, then
he may copy the ciphertext for the first cipherblock of sector Sp to the beginning
of his own sector S4 using raw mode, then ask the oracle to read the plaintext of
Sa. The result will be

(5) Pz ® F(B) & F(A)
and since the attacker knows F'(B) and F'(A) he trivially finds the plaintext Pg.

We may try to block such attacks by making the IV function F' unknown to the
attacker. A very simple, and secure, choice is

(6) F(A) = Ex(A),

which is exactly equivalent to prepending A to the sector plaintext and then doing
CBC mode encryption of the extended text using an IV of 0; thus in systems
optimized to do CBC in hardware this is a very easy secure IV to use.

In the most general case this protects the first cipherblock of CBC encrypted
text from copy and paste. However, there is a special case which will unfortunately
be quite common in disk storage. This is that at some time the attacker knows
plaintext Pp in a number of locations B on the disk, due either to analysis of

ot

ENCRYPTION OF STORED DATA IN NETWORKS

how file systems structure the disk on initial format or due to other sources of
information such as traffic analysis. At that time the attacker performs the above
copy and paste and observes the value Pg @ F(B) @ F(A), and since Pg is known
deduces the value

(7) DIF(A,B) = F(B) ® F(A)

which is stored for future use. At some future time a new, unknown value Py is
encrypted at location B as Cz. The attacker copies C; to location A, decrypts
through a legitimate read operation, and xors the stored value DIF'(A, B) to yield
Pg.

This attack may also be reversed; any chosen plaintext P @& DIF(A, B) may be
legitimately written to location A, and the resulting ciphertext may be copied to
location B. When read by the legitimate owner of location B, it will yield plaintext
P, as desired by the attacker.

Even if the value of plaintext Pp is not known to the attacker, the copy and
paste attack described renders the difference between new and old text in a location
easily deducible. The difference in values of (5) above for Pp and later P is exactly
Pp @& Pj so the first cipherblock of CBC mode is always as weak as CTR mode.

Independent of the IV function and the existence of known plaintext, copy and
paste always allows the decryption of 97% of the data in a sector, since only the
decrypt of the first cipherblock is dependent on the IV. The decrypt of the remaining
31 cipherblocks in a 512 byte sector yields the correct plaintext so long as the
preceding cipherblock’s ciphertext is unchanged, since

(8) Pii1 = C; @ Dg(Ciyr).

Thus, so long as the contents of sector B are moved without change to sector A
and then read through the oracle, 31 out of 32 cipherblocks decrypt correctly.

In summary, CBC mode with a known IV function is vulnerable in the first
cipherblock of a sector to trivial decipherment, or to replacement with ciphertext
yielding a chosen plaintext. If the IV function is unknown to the attacker, any
structure to the file systems placement of data on the disk that allows the attacker
over time to observe the ciphertext of known plaintexts in cipherblock 1 still allows
attacks. Any difference in the plaintext value at a cipherblock 1 location can be
observed even if no single plaintext is known. And, any cipherblock 2 or higher is
vulnerable to a malleability attack and to decryption using copy and paste. Thus,
CBC mode is not recommended for sector-level ciphers in storage networks.

The above arguments allow us to immediately dispose of several other possible
simply tweaked ciphers. As before with IVs, we may generate a tweak for any
cipherblock i of any sector N using any tweak function T'= F(N,), and then form
either of two tweaked ciphers:

9) Cn,; = Ex(Pn; & T)(tweak before)

(10) Cn; = Ex(Pn;) & T(tweak after)

6 IAN F. BLAKE, CYRIL GUYOT, CLEMENT KENT AND V. KUMAR MURTY

Such ciphers have been proposed in the past to protect standalone storage systems,
in which an attacker may have raw mode access or partial oracle access but not
both together. As they can be parallelized they can be highly efficient in hardware
implementations, and if the tweak function is not known to an attacker either
protects well against dictionary analysis on a stolen disk. Clearly in a networked
storage environment copy and paste renders these simply tweaked ciphers unsafe.

One may ask whether tweaking before and after encryption is safe against copy
and paste. The resulting cipher is:

(11) CN,'L' =T & EK(PN;L 2] T)

As this is the construction in Theorem 2 of [14], it might be thought that this
construction has been proven secure so long as the function F' is one of the e-almost
2-xor-universal (e-AXU2) set of functions of [14], such as hash127. However, by the
arguments above, if the attacker knows the tweak function F, (11) is completely
vulnerable to copy and paste.

If the tweak function F' is not known to the attacker, however, (11) resists copy
and paste even when the attacker has known plaintexts. This may be contrasted
with the statement “The tweak is not intended to provide additional uncertainty to
an adversary. Keeping the tweak secret need not provide any greater cryptographic
strength.” [14]. When subject to copy and paste attacks, cipher (11) must have
at least one secret parameter for the tweak or it will be insecure. This seems
to be implicitly acknowledged in section 3.1 of [14] where, when discussing the
efficiency advantages of (11), the authors state it does require a longer key. Halevi
(personal communication) has suggested that the tweak secret may be derived from
the symmetric encryption key, for instance as Fx(0). This obviates the need for
additional secrets. The effect of this on the strength of (11) is not known.

An interesting question is what advantage the attacker may gain from creating
the collection of values:

(12) Ex(P; © T) ® Ex(P; ® T)

which the attacker generates by writing chosen plaintexts P; and Pj(to one of his
own locations and combining the resulting ciphertexts. As the location is constant,
T is constant but unknown, and the attacker can observe the difference in the result
of changing any specific bit in the input text, although this text is not known. Does
a form of differential cryptanalysis apply here?

3. Two CLASSES OF TWEAKABLE BLOCK CIPHERS

The notion of a tweakable block cipher was introduced by Liskov et al [14]. They
observe that most modes for a block cipher can be viewed as a mapping

E.-KxVxM-—CC
where K € {0,1}* is a k-bit key, V' € {0, 1}" is an initialization vector, M € {0, 1}*
is a message of arbitrary length and C' € {0,1}* is the corresponding ciphertext.
The feedback modes offer the property that the same message block will map to a

different ciphertext block if its position within the plaintext differs. On the other
hand they may be vulnerable to a copy-and-paste attack.

ENCRYPTION OF STORED DATA IN NETWORKS 7

The idea of a tweakable cipher is to add a level of variability in the ciphertext
in a more elegant and efficient manner than feedback modes. The mechanism is by
adding an easily and efficiently computable ‘tweak’. Thus the previous equation
becomes:

E:KxTxP—C

where K € {0,1}*, T € {0,1}! and P, C € {0,1}" are the key, tweak, plaintext
and ciphertext respectively. Changing the tweak should be a less costly operation
than changing the key and, in essence, any given setting of the tweak should give
rise to a different family of block ciphers. As we have observed above, to avoid copy
and paste attacks, it is necessary that there be some element of secrecy in relation
to the tweak. The differentiation between uncertainty provided by the tweak and
security provided by the key, and the clearer separation of the two concepts in that
work [14], is an important contribution to the study of block ciphers. Previous
work such as [8], [18] also inherently have the notion of a tweak although not so
clearly delineated.

Several authors have addressed the security issue with particular reference to
storage including [8], [10] and [17]. In the next section the key result of [14] is dis-
cussed and one particular version of the tweaked block cipher is introduced. Section
3 considers the security of this scheme by establishing results on the equidistribu-
tion of certain binary n-tuples. The final section comments on the results in terms
of application to storage networks.

4. TWEAKABLE BLOCK CIPHERS

The key results needed from [14] are reviewed. Using the notation of [14], de-
fine the security of a tweaked block cipher F with block, length n and key K as
Secg(q,t), the maximum advantage that an adversary can obtain when trying to
distinguish between the tweaked encryption E k() with a randomly chosen key K
and a random permutation ﬁ() on the space of binary n-tuples, when the adver-
sary is allowed ¢ queries to an unknown oracle (either Ex(-) or II(-)) when allowed
computation time ¢. The advantage is defined as the difference between the proba-
bility the adversary outputs 1 when given oracle access to Ex and the probability
the adversary outputs 1 when given access to II. It is argued that the block cipher
may be considered secure when Secj (g, t) is sufficiently small.

A stronger version of this notion is Sec/E (g,t), the maximum advantage when

trying to distinguish between the pair of oracles Ex(-), Dg(-) and the random
permutations I:I, II-! when allowed ¢ queries and time ¢. The notions apply to
a tweakable block cipher and we say that the tweakable block cipher is chosen-
ciphertext secure if Secj(q,t) is sufficiently small, in which case it is referred to as
a strong tweakable block cipher.

The key result of [14] of interest here is as follows. Let ¢ > 0 and let H denote a
family of functions {0,1}* — {0,1}" with the property that for any x,y € Fy: and
any z € Fon

(13) Pralh(e) & h(y) = 2] < ¢

where the probability is taken over h € H chosen uniformly.

8 IAN F. BLAKE, CYRIL GUYOT, CLEMENT KENT AND V. KUMAR MURTY

If z = 0, we have to exclude x = y for otherwise the probability on the left of
(13) is 1. This does not seem to be stated explicitly in [14] but is clearly a necessary
restriction.

Following [14], we shall call such a family an € — AXU; (or e-almost 2-xor-
universal). The condition is a form of equidistribution to prevent an attacker to
gain information from any skewness. We then have:

Theorem ([14] Theorem 2) Let Ex (T, M) = Ex (M ® h(T)) ® h(T) and let H

be an € — AXUsy family with € > 1/2™. Then E is a strong tweakable block cipher.
Specifically

Sec;;(q,t) < Sedp(q,t) + 3eq®.

We can actually work with a variant of the e — AXUs space of functions. For
€ > 0, and for each y, and for any choice of {z, 4}, consider the condition

Z Pry[h(z) ® h(y) = zay] <e(g—1)
TF£Y

where the summation is over values of x excluding y. Let us call a function h
satisfying this condition e-pseudo 2-xor-universal (e — PXUs). Clearly an e— AXUs
function is also an € — PXUs; function. However, the converse need not hold. We
then have the following result.

Theorem 4.1. Let Ex , be as above and let H be a e— PX Uy family with ¢ > 1/2".
Then E is a strong tweakable block cipher and

Sec’z(q,t) < Secy(q,t) + deq®.

For the tweaks of interest here we will write hy(z) to indicate that the tweak
depends in some simple way on a secret key k£ and storage location information
x and thus the averaging indicated in the theorem, for a fixed form of tweak, is
uniform over the set of possible secrets k.

We have in mind here the storage scenario with the parameters N, the sector
number on a hard drive (and may typically assume values up to approximately
240) and i is the cipher block number of the plaintext within the sector. Clearly
the situation is completely general but for illustrative purposes we will also assume
we are using AFES with block and key size of 128 bits and for a sector length of
512 bytes there are 32 blocks to a sector - hence i is in the range [0,31]. Thus in
these tweaks k is a secret element which will be taken to be an element in the finite
field Fyi2s with 2128 elements, realized as the set of polynomials Fa[x]/(p(z)) where
p(z) is an irreducible polynomial of degree 128 where Fy is the finite field with
two elements. For efficient arithmetic one might choose p(z) to be a polynomial
of low weight - in this case, since there is no irrecducible trinomial over Fy the
pentanomial 2128 + 27 4+ 22 + 2 + 1 will be used. We associate with the binary
128-tuple (ag, a1, as,,a127) the “polynomial”

1=127

> i’ € Fyos ~ Fala]/(p()).

=0

ENCRYPTION OF STORED DATA IN NETWORKS 9

With the tweak hy(-) the encryption process is then
Ciphertext = E (Plaintext @ hg (i, N)) @ hy (i, N)
for the fixed and secret k£ and the corresponding decryption is
Plaintext = D (Ciphertext @ h (i, N)) @ hy(i, N)

where E () and Dg(-) are the block encryptions and decryptions with key K €
{0,1}" (and for AES, we assume n = 128). One can easily see that this algorithm
is only secure if the original random element k is kept secret.

If an attacker manages to build a table of hy (i, N) & hy(j, N') then a copy and
paste attack would still be successful. To see this suppose an attacker has access to
the decryption oracle at (j, N') and wants to decrypt the ciphertext at (¢, V). The
attacker first copies the ciphertext Ex (Plaintext@hy (i, N))@hg (i, N) and XOR’s it
with hy (i, N)®hg(j, N'). The attacker now has Ex (Plaintext®hy (i, N))Dhg(j, N')
and can apply the decryption oracle to get

D (Ex (Plaintext & hi(i, N)) @ he(j, N') & hi(j, N')) & hi(j, N')

= Plaintext & hy (i, N) @ hi(j, N).
The attacker now has only to XOR this with hg(i, N) @ hi(j, N') to retrieve the
Plaintext.

As a consequence and the previously quoted theorem, it is clear that the security
of this algorithm requires that

(i7j7 hk(zvN) @hk(]aN/)) for ivj € [OvMaX]

be “equidistributed”. The equidistirbution properties of the tweaks of interest are
considered inthe following section.

5. EQUIDISTRIBUTION PROPERTIES FOR THE TWEAK

Clearly a great many tweaks are possible and to prove there security it is sufficient
to consider their equidistribution proerties in the sense specified by the previous
theorems. The security of one (or two) specific tweaks will be considered in this
section.

5.1. A multiplicative tweak. Consider the function defined by the equation:

In the following f is taken to be injective over the range of N and i. A simple
example would be f(N,i) = (256N + 7).

The computation of f is one of integer multiplication and addition modulo 228 —1
and then converted to its binary expansion to yield an element of Foizs.

To establish the security of the tweaked system it is necessary to establish the
distribution properties of the system:

{Zajvkl@kj} for 1,7 € Faizs.

10 IAN F. BLAKE, CYRIL GUYOT, CLEMENT KENT AND V. KUMAR MURTY

Notice first that there is a natural association between elements of Foi2s and the
integers: for the element 8 € Foi2s, 3 =), b;a*, with b; € Fy, viewing the b; to be
integers in {0, 1}, we can associate to each § a unique integer:

n—1
B — w(p) = Zbizi.
1=0

Thus
0< w(pB) <2™

We consider equidistribution of the following sequences. The first is
(i,5) — ai+ aj.
Here, i, j are given as functions
i= f(Ni,li), j=f(N;,¢5)
and where 1 < N;, N; < 240 represents the sector number and 1 < ¢;, ¢; < 32is the

cipher block number within a sector. Each cipher block consists of 128 bits and a
sector is 512 bytes.

We need to study
Pry[h(z) @ h(y) = 2]
for
h e H,z,y € Foizs
For this specific “tweak”, this is equivalent to studying
Prilkz @ ky = 2]
= Pri[k(z @ y) = 2] = Pri[kt = 2]

If z = 0, by assumption & # y and so t # 0. The only possible value of k is
k=0.If 2 # 0, then t # 0 and kt = z is equivalent to k = 2t~ and

Prp[h(z) @ h(y) = 2]
#lk € Fauzs |kt = 2] 1

#[k € Fyis] 27

5.2. An exponential tweak. The multiplicative tweak discussed above has the
advantage of being very simple and efficient to implement. Mathematically, there
are clearly many variants that one could still produce security estimates for and
use.

One particular example is an exponential version of the multiplicative tweak
discussed above. In this we set

hk(l) — k256N+i.
In this case, we have the obvious estimate
P?“k[hk(i) &) hk(j) = Z] < max(i,j)/Z".
Thus, as long as ¢ is small compared to

2"/2/mao<(z'7 j)%

ENCRYPTION OF STORED DATA IN NETWORKS 11

the tweak is secure. Unfortunately, ¢ and j can be as large as 2™ and so this
essentially means that the number of queries will have to be very small. It is an
interesting question to ask whether the above estimate can be improved. Some
heuristics seem to suggest that for “most” values of ¢ and j, the bound can be
significantly improved. It would be useful to have a proof of this together with
an estimate of the exceptional set. However, such a proof, as well as an improved
bound valid for all ¢ and j, seem to be difficult mathematical problems.

We suggest that the strong tweakable block cipher in (11) above resists copy and
paste when the tweak function is unknown to the attacker. In [14] it is noted that
e-AXU2 functions such as hash127 would allow (11) to run in about 1.5 times the
cycles required for a single AES-128 encryption. In this paper, we discuss allowing
other multiplicative tweak functions such as

(14) F(N,i) = k- (N +2%)

where multiplication is in the finite field, k is a 128 bit tweak secret, and the addition
in the brackets is addition in the finite field of binary n-tuples with the same bit
pattern as the integers N and 2¢. We show that (11) is also a strong tweakable
block cipher with secret k. We call this cipher LRW-2 below.

In the most general case Galois field multiplication of 128 bit elements is signif-
icantly slower than hash127, so LRW-2 would seem an inefficient choice of cipher.
However, if sufficient memory is available to store a table of the values k - (27), for
j =0 to c+5 (all of which are calculated on the first encryption using k), then
subsequent tweaks for successive cipherblocks may be calculated from the tweak for
the preceding cipherblock by a few xor operations using values from the table. In
one software implementation, this resulted in the cycles to encrypt a sector using
LRW-2 being about 1.3 times the cycles to do AES-128 ECB alone. In addition,
if the encryptor mostly works on one or a few storage devices, so that the above
tables may be cached, calculations of the tweak for later sector writes will be even
shorter (the small average Hamming weight of N @& N’ when N and N’ are close
means few XORs are required to calculate k- N’ from k- N). This reduces the ratio
between sector encryptions using LRW-2 and simple AES to between 1.1 and 1.2.

Thus, for software implementations, and for some hardware systems that can use
the above optimizations, LRW-2 may have a reasonable average cost. If, however,
the implementation has little memory for the tables (about 1KB per k value) or
must service many different storage devices in random order, LRW-2 may be less
efficient.

5.3. Encrypt-Tweak-Encrypt. An alternative strong tweakable block cipher is
given in Theorem 1 of [14]:

(15) C = Ex(T & Ex(P)).

This cipher is called LRW-1 below. In software implementations it will take more
than twice the cycles needed for a simple encryption, and so is less efficient than
(11) using hash127 or (14). However,the coding is minimal if the tweak function is
simple, and in hardware (see below) it may be quite efficient.

12 IAN F. BLAKE, CYRIL GUYOT, CLEMENT KENT AND V. KUMAR MURTY

Unfortunately, Joux has shown [13] that if the tweak T is known to the attacker,
a copy and paste attack can be mounted against LRW-1. We illustrate a simple
case and refer the reader to [13] for details of the more general attack. Suppose the
tweak function is the disk location itself, that is T = B. The attacker is assumed
to have legitimate access to locations Ay and A;. He attempts to acquire access to
location Ay = Ay ® A; @ B. If granted, he performs:

[1] Copy Cp to Ay - raw mode copy and paste B to Ay

[2] Read Py = Dg(Ay® B® P) - oracle read from Ay

[3] Write C; = FEx(Ag ® A1 @ B @& P) - oracle write to A;

[4] Copy C; to Ay - raw mode copy and paste

[5] Read P» = Dg(4o®A4A; ® Ay @ B @ P) = P - oracle read from
A

The more general attack of Joux succeeds against any tweak function 7" known
to the attacker, if the attacker has access to 2 MB of disk.

We therefore conclude that LRW-1 must use a tweak function T = F(N,1)
unknown to the attacker to resist copy and paste. In addition, as the above simple
attack shows, the function F' must not be linear in the location, which rules out
tweaks such as (14) above. The question of which functions yield tweaks for LRW-
1 secure against copy and paste is not answered in this paper; in the calculations
below we assume a function like hash127 is used.

5.4. Efficiency of Tweakable Block Ciphers. In pipelined hardware implemen-
tations of AES-128, 10 rounds will be performed each in its own silicon. If the time
to perform 1 round is t, the time to encrypt 32 cipherblocks in ECB mode will be
42t that is, a full sector can be encrypted in 4.2 times the cycles required to encrypt
one cipherblock.

For a fully pipelined implementation of LRW-1 with a tweak function requiring
time Mjt to calculate, twice as many gates will be required as for ECB support,
and time (53 + M)t is required to encrypt one sector. So using twice as many
gates, a fully pipelined LRW-1 system encrypts a sector in

(16) (53 + M;)/42 ~ 1.26 + M,/42
more cycles than a fully pipelined ECB sector encryptor. For AES-256 the ratio is
61/46 + M7/46 ~ 1.33 4+ M, /46.

Thus pipelining reduces performance impacts of LRW-1 at the expense of using
twice as many gates.

For LRW-2 with AES-128, assume time Mst is required to do the initial Galois
field multiply, 2 cycles for tweaking before and after, and that calculation of tweaks
for successive cipherblocks can be done in parallel with other steps. Then the ratio
between LRW-2 and pipelined sector ECB will be

(17) (Ma + 44) /42

The value of My will depend on specifics of the system design but for processing
of multiple sectors with a table cache Ms may average as low as 4 or 5, and would
thus be about as fast as pipelined LRW-1. For AES-256 the ratio is

ENCRYPTION OF STORED DATA IN NETWORKS 13

(18) (My + 48)/46.
For low average Ms pipelined LRW-2 may be more efficient than pipelined LRW-1.

6. TIMINGS FOR THE TWEAK

The time needed for a multiplication over Fqi2s, when the irreducible polynomial
is chosen to be X'28 4+ X7 + X2 + X + 1 is about 0.7 microseconds on a Pentium
IV-M 2GHz. The time spent on doing one field addition on our machine is about
.07 microseconds. On the same machine AES ran at about 90MB/s, corresponding
to .17 microseconds spent on each block.

Since the tweak needs to be done for all the blocks, it is clear that computing
the field multiplication for every block is not efficient enough to make it useable. -
Such an implementation would give a throughput of 17MB/s. -

As a consequence, one has to use precomputations. For example if one knows
k-74”, then k-” (i+1)” which is the next block is easy to compute and can be done in
one addition. Note that 7 4+ 1 is an addition of integers, whereas the multiplication
is done in Foyiz2s.

Since encrypting/decrypting files on a hard drive has to be done one sector at a
time, and since a sector is usually 512 bytes - or 32 blocks -, then the tweak requires
one multiplication and 32 additions per sector. The time spent tweaking on one
sector would hence be 32*%0.074+0.7 = 2.94 microseconds. The time spent in AES
would be 32*0.17 = 5.44 microseconds.

Furthermore, in the case when the file being read spans several sectors, it is
not necessary to recompute the field multiplication, and higher throughputs are
achievable.

An unoptimized implementation of this algorithm yields a throughput of about
50MB/s for one sector. A similar implementation of the Encrypt-Tweak-Encrypt
algorithm yields 37MB/s.

7. CONCLUSIONS

Many existing cipher modes such as CBC, ECB, CTR, and others are not suit-
able for providing secure confidentiality in a networked storage environment, due
to malleability and copy and paste attacks. Alternative ciphers, based on the con-
cept of strong tweakable block ciphers, do resist these attacks and can be made
reasonably efficient in both software and hardware implementations.

We discussed two such ciphers, labelled LRW-1 (encrypt-tweak-encrypt) and
LRW-2 (tweak-encrypt-tweak).

LRW-1 will be 50%-80% slower in software than LRW-2. Its efficiency in hard-
ware will depend sensitively on a choice of a tweak function both efficient and secure
against copy and paste.

LRW-2 requires extra code or careful hardware design for Galois field multiplica-
tion, but will run faster than LRW-1 in software and in some hardware implemen-
tations, especially where many sectors are encrypted with few keys and memory is
not limited.

Both ciphers seem, based on present understanding, to be possible candidates
for an IEEE/ANSI standard cipher for sector level encryption. Neither seems to be
encumbered with patent issues. It is to be hoped that experienced cryptanalysts

14 IAN F. BLAKE, CYRIL GUYOT, CLEMENT KENT AND V. KUMAR MURTY

will challenge these ciphers to determine whether hidden weaknesses exist. Based on
our understanding to date, we propose that LRW-2 be the basis for the IEEE/ANSI
P1619 standard.

It has been shown that one proposed family of tweaks indeed consists of e— AX U,
functions and hence the resulting tweaked block ciphers are secure in the sense
described. For the multiplicative family each new tweak in going from one sector
to the next requires only one addition in Fqi2s and for the exponential family only
one multiplication. As such, the tweaks are very efficient to compute and typically
much more efficient than changing the key. They would seem to provide a good
solution for the level of variability and security needed for the storage application.

8. ACKNOWLEDGEMENTS

We would like to thank Donald Beaver, Rob Ewan, Shai Halevi, Serge Plotkin,
and Yamian Quintero for very helpful discussions on various aspects of this work.
We would also like to thank Jim Hughes who stimulated this avenue of research.

REFERENCES

[1] Alain Azagury, Ran Canetti, Michael Factor, Shai Halevi, Ealan Henis, Dalit Naor, Noam
Rinetzky, Ohad Rodeh, Julian Satran, A Two Layered Approach for Securing an Object
Store Network, First International IEEE Security in Storage Workshop, pp. 10-23 Dec.
2002.
Donald Beaver. Network Security and Storage Security: Symmetries and Symmetry-
Breaking. First International IEEE Security in Storage Workshop , pp. 3-9 Dec. 2002
[3] Matt Blaze, A Cryptographic File System for Unix. ACM Conference on Computer and
Communications Security, Fairfax, VA, November 1993
[4] John Chirillo , Scott Blaul . Storage Security: Protecting, SANs, NAS and DAS, John Wiley
and Sons; Dec. 2002
[5] Tom Clark. Storage Area Networks: A Practical Reference for Implementing Fibre Channel
SANs. Addison Wesley. August 1999.
[6] Thomas Clark. IP SANS: A Guide to iSCSI, iFCP, and FCIP Protocols for Storage Area
Networks. Addison Wesley. Nov. 2001
[7] Consumers, banks clash as ATM fraud escalates. http://www.pittsburghlive.com/x/tribune-
review/business/s130795.htm! April 2003
[8] Paul Crowley, Mercy: A fast large block cipher for disk sector encryption, in Fast Software
Encryption, Tth International Workshop, Lecture Notes in Computer Science, Springer-
Verlag, pp. 49-63, 2000.
[9] Hacker hits up to 8M credit cards http://money.cnn.com/2003/02/18/technology /creditcards/
Feb, 2003; http://www.gartner.com/resources/113200/113282/113282.pdf
[10] Shai Halevi, An observation regarding Jutla’s modes of operation, preprint.
[11] J. Hughes, M. O’Keefe, C. Feist, S. Hawkinson, J. Perrault, D. Corcoran, A Universal Access,
Smart-Card-Based, Secure File System , Atlanta Linux Showcase , October, 1999, Atlanta,
GA
[12] James Hughes. Call for Algorithms, Security in Storage Work Group. www.cryptobroker.net
April 2002
[13] Antoine Joux, Cryptanalysis of the EMD Mode of Operation. EuroCrypt 2003, May 2003.
[14] Moses Liskov, Ronald L. Rivest and David Wagner, Tweakable block ciphers, CRYPTO
2002, Lecture Notes in Computer Science, ed. M. Yung, Springer-Verlag, vol. 2442, pp.
31-46, 2002.
[15] Project 1619: Standard Architecture for Encrypted Shared Storage Media August 14, 2002
- http://www.siswg.org/
[16] Benjamin C. Reed, Mark A. Smith, Dejan Diklic. Security Considerations When Designing
a Distributed File System Using Object Storage Devices. First International IEEE Security
in Storage Workshop ,pp. 24-34 Dec. 2002

x

ENCRYPTION OF STORED DATA IN NETWORKS 15

[17] Phillip Rogaway, The EMD mode of operation (a tweaked, wide-blocksize, strong PRP),
submission to IEEE Security in Storage Working Group, (www.siswg.org).
[18] R. Schroeppel, The hasty pudding cipher, preprint, (www.cs.arizona.edu/ rcs/hpc)

9. APPENDIX: PROOF OF THEOREM 4.1

Theorem 4.1. Let EK,h be as above and let H be a e— P X Us family with e > 1/2™.
Then F is a strong tweakable block cipher and
Sec’; (q,t) < Secz(g,t) + 4eq?.

Proof. The proof of the theorem is very similar to that of [14], Theorem 2. We shall
outline the argument and give details only in those aspects that differ from [14].
We let Pro denote the probability measure when the adversary A interacts with
the tweaked encryption Ex p and Pr; when A interacts with a tweaked random
permutation II.

We recall that II is a family of random permutations parametrized by 7. We
assume that A does not make repeated or redundant queries. Each query may be
represented by a pair (T, M) where T is the tweak input and M is the plaintext
input by A. The oracle responds by returning C'. Define the random variables

N=M & h(T)
and
B = C @ h(T).
Denote the sequence of queries by (T3, M;,C;) for i = 1,2,---,q. As A does not

make redundant queries, we may suppose that these are distinct triples.

We will show that if Fk is a randomly chosen permutation II, then EK is a
secure tweakable block cipher. Once this is established, the same argument as in
[14] will show that for an arbitrary Ex that is computationally indistinguishable
from II, Ex is a secure tweakable block cipher.

First, using the fact that H is a e — PXU, family, we establish an estimate for
the probability that for some i # j, we have
N, = N;
or
B, = B,
(Following [14], let us call such an event bad. More precisely, if 7, j < n, we call this
Bad,.) This is the case whether we are working in the measure Prg or Pry.

Consider Pry and, for example, the first condition. As indicated in [14], Lemma
2, when the oracle is II, the choice of function h is independent of the transcript
of queries and responses. Hence, we can defer the choice of h until after all the
queries are completed. This means that the triples (T;, M;, C;) are all fixed. Now,
the above condition is equivalent to having

MT) & W(T)) = Mi & M;
for some i # j. By the e — PXUs condition, the total probability is bounded by
> Pru[h(T) @ W(T;) = M;® M)

1<i<j<q

16 IAN F. BLAKE, CYRIL GUYOT, CLEMENT KENT AND V. KUMAR MURTY

From this sum, we can drop those ¢, j for which T; = T} as Prp, = 0 in that case.
We thus see that the above sum is

< Z Pri[h(z) ® h(y) =2z, < eq(qg—1).
TF£Y
as H is an € — PX U, family. The same estimate holds if the IV; are replaced by the
B;. This shows that under Pry, the probability of a bad event is

< 2eq(q—1).

Now consider the same event under the measure Pry. For each i, consider the
event that Nyi,---, N;_; are distinct and IN; = N; for some j < 7. It occurs with
probability Pro(Bad;|Bad;—1). We want to estimate

> Pro(Bad;|Bad;).
1<i<q
By [14], Lemma 1, we have

Pro(Badi|Badi,1) = P?“l (Badi|Badi,1).

Under Pry, the condition Bad; conditioned on Bad;_i; means that for some
j <1, we have
h(Tl) D h(Tj) = M, ® Mj.

As we are using the measure Pry, the probability of this happening is

> Pry[h(Ty) & h(Tj) = M; & Mj]

j<i
which by the e — PXU; condition is

<e(g—1).

Now summing over ¢ shows that the probability that N; = N; for some i # j
is < eq(q — 1). To complete the argument, it suffices to estimate the probability
that B; = B, for some ¢ # j, but this is done as in [14] and does not involve
the e — PX U, condition. Assuming that e > 27", this probability is < eq(g — 1).
Putting this together gives the estimate

Pro[Bad] < 2eq(q—1).

By [14], Lemma 1, we know that
Pro[Bad] = Pri[Bad].
It follows that as in [14],
Sec’s,(q,t) < 4eq(q—1).

Now, as in [14], the result follows.

KASTEN CHASE APPLIED RESEARCH, MISSISSAUGA, ONTARIO, CANADA AND UNIVERSITY OF
TORONTO, TORONTO, ONTARIO, CANADA

