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The littoral zone is important in lake ecosylptermns. It affects physical, chemical. and 
biological processes of the whole lake. We first describe patterns in the shoreline lengths of 
a lake drawn from maps of different scales. Second, we show that these patterns or 
"'measurement laws" hold for many different lakes. We then use "fractal" measuring theory 
to providc a unifying explanation of these empirical results. Fractal theory also makes new 
predictions about the statistical properties of groups of lakes. Patterns in our data were 
consistent with these predictions. Finally, we discuss how physical and geornorphological 
processes can give rise to fractal patterns in the landscape. 
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La zone littorale est importante dans les Ccosystemes lacustres. Elle influe sur Ies 
processus physiques, chimiques et biologiqucs du lac entier. Nous dCcrivons en premier lieu 
la configuration de longueurs de lignes de rivage d'un lac dessinies ti partir de cartes ii Cchelles 
diffkrentes. Nous d6montrons en second lieu que cec configurations ou '"ois de snesures" 
sont valables pour plusieurs lacs. Comme explication unifiant ces rksultats empiriques, nous 
faisons appel 2 la thborie de la mesure des c< fractures s. Cette thCorie permet aussi de 
nouvelles predictions quant aux propriktes statistiques de groupes de lacs. Nos donnkes 
s'accordent avcc ces predictions. Finalement, nous examinons la f a ~ o n  dont ces processus 
physiques et g6omorphologiqucs produisent des fractures dans le paysage. 
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THIS paper demonstrates how two p h y s i d  properties of 
lakes, shoreline length and littoral area, can be accurately 
characterized. The results are used to predict how shoreline 
length changes with lake area. These rclationships can also 
predict the distribution of lakes of different size-classes. 
Implications for the biological processes in the lake are dis- 
cussed. 

Shoreline and Bittoral properties are known to have im- 
portant predictive value in biological relationships (Rigler 
1973; Barsdate et al. 1974). Simple. empirical indiccs of 
Bittoral extent have been used to classify diverse lakes and to 
evaluate the importance of their littoral area$. One of the 
oldest rno~hotnetric indices is the shoreline developnlent 
index, defined as 

where L is the measured shoreline length, and A is the lake 
area. A circle gives an index of 1: larger values should indi- 

'This is a contribution of the Lakc Ecosystem Working Group of 
the University of Toronto. 
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cate more convoluted figures. 
The development index has been used to relate nutrient 

loading in a lake to the length of its shoreline (Seppanen 1972; 
quoted in Dillon and Wigler 1975). It has also been used in 
statistical studies of fish col~lmunity structure (Johnson et al. 
1977). However, thcrc is a paradox associated with the calcu- 
lation of the index. Whilc the total area of the lake can be 
measured fairly accurately, the measurement of circum- 
ference is more arbitrary. Measured lengths are dependent on 
either the detail of the map or the accuracy of the measuring 
instrument used. Shoreline lengths that we have determined 
by remeasuring detailed maps may be as much as 100% 
greater than published values. We need to knom how finer or 
rnsre detailed scales of measurement change overall Icngth 
estimates. 

'Fhe relationship between length and scale of measurement 
was first explored by Richardson (1961) for curves such as 
ccsastlines. A theoretical basis for his findings was provided 
by Mandelbrot (1967). The surprising result of these investi- 
gations was that the measured length of the curve did not 
reach an asynlptotic, rnaxinlurn value, but continued to in- 
crease with finer and finer scales of measurement. Further- 
more, the relationship between measured length and the scale 
of measurement was allometric. This implies that these curves 
do not have a well-defined length. In practice, it means that 
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TABLE 1. The latitude, longitude, and the scale of the map from 
which the lake c~~atiine was digitized, for the lakes used in this study. 

Lake Latitude Longitude Map scales used 

Big Duck Lake 
Bob Lake 
Crotchet Lake 
Gull Lake 

Lake Kawagama 

Muskoka Bay 

Smudge Lake 
Thrasher Lake 

length determinations for different lakes will only be com- 
parable if performed with the same level of detail, that is using 
the same scale of measurement. The length of a shoreline is 
then a scale-dependent quantity. This result is unsatisfying in 
that we cannot determine indices such as shoreline develop- 
ment independentiy of some arbitrary scale of measurement. 

Mandelbrot ( 1977) explores the properties of highly con- 
voluted shapes, of which river courses and coastlines are but 
two examples. He proposes an index which can be used to 
measure their degree of convolution. This index is called the 
fractal dimension. The fractal dimension can be determined 
empirically whenever there is an allometric relationship be- 
tween the scale sf measurement and the length measured at 
that scale. For a smooth curve, the fractal dimension D is 1; 
for more convoluted curves, D is between l and 2. It is 
determined as 

where rn is the slope of the allometric relationship: 

where L(s)  is the length measured at a scale s. 
Mandelbrot (8977) also predicts that lake area A and shore- 

line length & will be related for lakes with the same fractal 
dimensions D by the equation: 

The c's are constant terms. Note that when D > 1, shoreline 
development is a biased measure of lake shoreline complex- 
ity. It will increase with lake size even for lakes with the same 
shape or shoreline complexity. 

A third 'Vractal" law, known as Korcak's law, is noted by 
Mandelbroot (1977). If F ( A )  gives the fraction of Bakes in a 
region with area greater than A, lakes with fractal shoreline 
dimension D should satisfy the equation: 

So there are several ways to test for fractal patterns in lake 
structure. We tested the applicability of the fractal measuring 
concept to Ontario lakes by investigating the relationship be- 
tween shoreline complexity and littoral zone structure. 

I km 

L LAKE 
Frcr. 8 .  Gull Lake as drawn by computer from digitized shoreline 
coordinates. 

Materials and Methods 

Maps at several different scales (1 : 25 OW- 1 : 500 080) 
were obtained for Canadian Shield lakes in the Muskoka and 
Waliburton regions of Ontario (Table I ) .  Lake shorelines were 
digitized on a Ruscom Co-ordinate Digitizer and stored as a 
series of x- y coordinates. The x- y coordinates fell within 
8.5 mm of the original map outlines. The x-y coordinates 
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LAKE KAWAGAMA 
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FIG. 2. Two computer-drawn outlines of a section of Lake Ka- 
wagama. Below each figure is rhc scale of the original map from 
which each shoreline was digitized. 

.\. 

were joined to represent the digitized shoreline (Fig. I ) .  'To 
measure a Iake at a given scale s, a chain of connected Eine 
segments, each of fixed length s, was superimposed on the 
computer map so that: (a) the endpoints of each segment fell 
on the digitized shoreline; (b) shoreline path between end- 
points was minimal. The measured length was then the num- 
ber of Iine segments used times the length, s, of each segment. 
A correction was made to the length of the final segment so 
that the endpoints met. The measured length was affected by 
the starting point. so the procedure was replicated several 
times, using different starting p in t s .  This procedure is anal- 
ogous to overlaying a chain with links of length s on the 
digitized shoreline, the ends of each link touching the shore- 
line, and then measuring the length of chain used. 

Lake lengths were measured at scales, s, ranging from the 
smallest compatible with map detail to approximately one 
fifth of the length of the digitized shoreline. For certain lakes, 
several different maps were used. These maps had been drawn 
at scales ranging from 1 : 25 000 to I : 500 000. Digitized 
shorelines were obtained from each mag. This additional in- 
formation enabled us to evaluate the effect of map detail on 
the measuring procedure. 

We tested the relationship (eqn. 4) between shoreline 
length and Bake area by using a second data set, morphometric 
data on 21 lakes from the Lake Ecosystem Working Group. 
These lakes cover a somewhat wider region than the eight 
digitized lakes. As the shoreline length determinations were 
all taken from maps drawn at the same scale. we felt that thesc 
lengths were comparable. 

To test the validity of Korcak's law, a third Iake data set 
taken from Cox (1978) was used. Numbers of lakes with areas 
between 1-9 ha and 10-99 ha (Cox's size-classes V andVI) 
in several watersheds covering the study area (HF, HH) were 
used to fit equation 5. 

Levels of detail on the above maps were not adequate to 

9.5- 
Orrginal Scale I : 125 000 o 

L N SCALE OF MEASUREMENT 

FIG. 3 .  The natura! logarithm of the measured shoreline lcngeh 
(metres) 1s plotted against the t~atamral logarithm of the scale of mea- 
surement (metres) for IJakc Kawagama. Three different d~gitlzed 
representations of the same length of shoreline Mere proci~~ced. Thc 
x ' s  show results from using a l .500 000 map, the closed circles a 
I : 125 000 map. and thc open circles a 1 :50 000 map. 

determine littoral zone areas. so an aerial photograph of 
Christie Lake (S.  Ont.) with a scale of 8 : 7700 was digitized 
and measured as before. A series of zones was defined. Each 
zone consisted of all p i n t s  within a fixed distance of shore. 
'The areas of these zones were determined by planimetry. This 
constituted our fourth data sct. 

Results 

Figure 2 shows the digitized outlines of a pcsrtion of Lake 
Kawagama taken from maps with scales I : 125 000 and 
1 :50 000, respectively. Figure 3 shows the results of the 
measuring procedure on Lake Kawagama for three different 
digitized shorelines. Intuitively, one would expect that the 
measured length would increase as the scale of measurement 
decreases. This is verified by the data, as there is a significant 
negative correlation between the measured shoreline length 
and the scale of measurenlent (I-? =. 0.85). If we tentatively 
entertain the hypothesis that Bake shorelines follow fracta! 
laws, we can make two types of predictions. We may find that 
we can extrapolate from large-scale to fine-scale measure- 
ments. Secondly we may find that lakes in the same geologi- 
cal province are similar in their shoreline structure. They 
should have the same fractal dimensions. 

From Fig. 3, we can see that shoreline length is not de- 
scribed by a simple allometric relationship. While the mea- 
surement data for the largest scale map is linear within its 
range, the data for both the 1 :SO 000 and 1 : 125 $0 scale 
maps show a significant lack of fit to a single linear model. 
This ineans that we cannot extrapolate to finer scales in order 
to predict fine-scale shoreline lengths. However, our second 
prediction appears to hold as all of the lakes show a similar 
pattern (Table 2). 'This pattern involves a second linear or 
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TABLE 2 .  Large- anad small-scalc slopes. log breaRpuint (metres) 
from best frttlng two-line rcgre\sjons for each lake 

Slopes 
_____ Breakpoint 

Lake Large bcaie Small scale (m! 

Big Duck Lake -0.64 -0.13 255 
Bob Lake -0.44 -0 16 482. 
Crotchet Lake -0.28 -0.12 178 
Gull Lake -0.27 -0.10 354 
Eake Ma\\ aganma -0.45 -0.12 354 
Muskoka Baq -0.44 -0.16 459 
Smudge Lake -0.55 -0.16 255 
Thrasher Lake -0.43 -0.16 482 

fractal relationship valid at finer scales of measurennent. We 
therefore propcpse a modification to our first prediction. 

Suppose the shoreline of a lake is formed by at least two 
different geomorphc~logical fractal processes. Each process 
modifies the shoreline, but at different scales. If we measure 
the shoreline at the scales at which the cffects of only one 
process predominate, then we find a single fractal law. If we 
had two processes working at two different scales. then the 
resulting measurement curve would have two parts. These 
two line segments would be joined at the characteristic scale 
or breakpoint separating the two processes. If the same pro- 
cesses are operating on ail of the lakes in our study area, then 
the line segments should all bend at the same scalc. 

To test this model, the data was partitioned into two sets, 
consisting of naeasurements at scales above or below a scale 
called the breakpoint. A separate line was fitted to each set. 
We repeated this procedure. varying the breakpoint. We 
recorded the breakpoint for which the regressions fit best. The 
results are shown in Table 2. 

This analysis revcalcd several patterns. (A) The two-line 
model fit very well for each lake. (B) The slopes of the upper 
and lower line segments fell into two different and distinct 
regions. Within each region the slopes showed remarkable 
coa~sistency. (C) Two processes were sufficient to explain call 
the measured relationships, and these processes were all 
separated at similar scales or breakpoints. For each lake the 
two-lime model explains sigraificantly more variance than the 
one-line model. The large-scale lines cosrespond to fractal 
dimensions clustering around a mean vaiue (.r f- 2 SE,) of 
1.44 6 0.09, while the dimensions at the fine scales cluster 
around 1.84 t- 0.02. The breakpoint has a mean value of 
350 rn t- 90 m. 

GULL LAKE 

LN SCALE QF MEASUREMENT 

FIG. 4. The natural logarithm of the measured shoreline length 
(metres) is plotted agai~lst the natural logarithm of the scale of nmea- 
surement (metres) for Gull Lake. Two different digltlaed representa- 
tions of the lake were used. The closed circles §hob\ the results from 
using a 1 : 500 000 map, the open circles a 1 : 50 0 0  map. 

The relation betwecn shoreline length L (measured at a 
fixed scale) and lake area ,4 was determined by a linear re- 
gression of In(Lg on ln(A). Equation 4 predicts that the slope 
of the fitted relationship will be half the fractal dimension 
D. For the 21 lakes in our second data net. the regression 
was highly significant; (r" 0.94, F,a,l,, = 268. P < 0.001) 
the value of D was estimated to be B .50 2 0. i 8 (Fig. 5) .  This 
agrees with the large-scale shoreline dimension I .44 + 0.09 
found earlier. When lakes from regions csutside our study 
area (Parry Sound, Sudbury) were included, the estimated 
value of D rose to 1.59 2 0.18 (r" 0.91. F t Z . < , ,  - 305, 
P < 0.001). 

We also calculated the fractal dimension D from Korcakqs 
law (cqn. 5) by using the relation: 

We then checked to see if the relationships were a result of 
the mapping procedure used, rather than natural properties of 
the lakes themselves. This was why we measured Lake 
Kawaganaa shorelines from maps at three different scales. The 
same procedure was also applied to Gull Lake. The results for 
Lake Kawagama are shown on Fig. 3 and for Gull Lake on 
Fig. 4. Although the original scales of the nmaps differ greatly, 
there is a remarkable consistency in the results. Measurements 
taken from cmde.large-scale maps overlap the measurements 
taken from fine-scale maps. Therefort: the results summarized 
in Table 2 are independent of mapping inaccuracies. 

When the value of A is takers to be B ha. the numerator and 
denominator above are just the numbers of lakes in size- 
classes V and VI in our third data set. The results are shown 
in Table 3. For the watersheds covering the central portion of 
our study area (2HF and 2HH), D was estimated to I-BB. 1.5 8 ,  
in agreement with our previous estimates. Other watersheds 
gave higher D values; the mean for five watersheds was 
1 .$4 I 0. B 1 .  These increased values behave like those found 
when equation 4 was applied to lakes from the north and west 
of our study area. 
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FIG. 5 .  The natural logarithm of lake area (km') is plotted against the natural Bogarithwr of the measured 
perimeter of the lake (km) for 21 lakes in our study area. From the slope of t h i b  regression wc are able to 
calculate an independent estimate of the average fractal dimension 01'  the shoreline for lakes in this area. 

TABLE 3. Areal distribution of Bakes in watersheds: a test of Korcak's Law. 

Number of lakes ~n size-class 
Estimate of D 

Watersheda LEWG lake group k' ( 80-99 ha) k'H ( B  -9 ha) from eqn. 6 

2HF+ 2HH Kawartha, Muskoktr 75 426 1.51 
2MR f 2KD Palgonqglin 111 724 1.63 
2DD+ 2CF North Ray, Sudhury 150 1022 E .66 

"Watersheds from Cox (1978). The correspondence between Cox's watersheds and the 
LEWG lake groupings is approxinnate. 

Finaliy, we cxamined how littoral area relates to shoreline 
complexity. As detailed lake contour maps were not available 
at the scale at which we were working, we decided to test tile 
simpler relationship of shoreline length to "mearshorc" area. 
Specifically, we measured the area of  zones within a given 
distance w of the shore. Bf the zone had sal~ooth edges of 
length L then the area would approximately be equal to 
L x Its. However. we have shown that the length L depends 
on the scale at which the shoreline is mcasured according to 
equation 3, or setting the scale s equal 80 \+I: 

where c is a constant and D is the fractal dimension. The area 

as a function of the width w of the zone would then be given 
by 

For sinooth curves, D is equal to 8 .  Thc constant c is then 
the length oi' the curve. The adjacent area is iinearly propor- 
tional to the width of the zone. For fractal shorelines, D is 
greater than 1 .  Thus, in very convoiuted lakes the shallowest 
parts of the littoral zone, the small bays anti coves, makc up 
a greater proportion of the zone than in less-convoluted lakes. 

The heuristic argument leading to equation 8 gives a formu- 
la identical with that given by the Minkowski-Bouligand 
di~nensiona law (Mandelbrot 1977). We wanted to see if thcse 
two relationships gave the same fractal dirncnsion. 
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RELATIONSHIP OF WIDTH TO AREA OF L ITTORAL ZONE 

/ 

LOG 6 I2 20 40 68 
SCALE 

W I D T ~  OF L ITTORAL ZONE 

FIG. 4 .  The relationship betweern the width of the littoral zcme (]TI) 
and its area (m2)  for Christie Lake. The broken line represents the 
expected relationship if the fractal dimension was equal to one. The 
open circles show the measured relationship ( s f 2  SE). 

Figurc 6 shows the relationship between the width of the 
zone and the measured area for Christie Lake. The fractal 
shoreline dimension cralcaalated from equation 5 was 1.149. 
When we repressed Iog(area) on log(width) we obtained a 
slope of 0.85 ( r 2  = 0.99). This is significantly different from 
a slope of one f F, = 22.5, P < 0.001). Using equation 8, 
we compute a fractal dimensiosn of 8.15. Although this is but 
a single example, the excellent agreement between the values 
is highly suggestive. 

Discussion 

How do the fractal properties of lake shorelines contribute 
to our understanding of lake structure and biology? The shore- 
line development index is of "cons~derable interest because it 
reflects the potential for greater developmenat of the littoral 
communities in proportion to the volume of the lake" (Wetzel 
1977). But as Hutchinson ( 1957) points out, shoreaine lcngth 
"depends on the fineness of detail of the map and for this 
reason the values obtained on maps of different scale. . . nnay 
be somewhat different." Thus shoreline development 
"suffers from the same sources of uncertainty as measure- 
ments of length" (Hutchinson 1957). The detenmination of 
a fractal measurenaent Haw overcomes this difficulty by 
demonstrating a common basis for interpretation of shoreline 
measurennents. 

Our data supported the hypothesis that Bakes in the same 
region show similar fractal properties. Two fractal laws held 
at large and small scr~les separated by a breakpoint at a scale 
of about one third of a kilometre. How might this have come 
about? 

Our lakes fall Into Hutchinson's geomorphological type 26, 
in which glacial action has removed softer rock overburden 
and differentially deepened rock basia~s in zones of fracture 
and shatter belts BHutchinson 1957). Arnbrose ( 1964; quoted 
by Chorley 1969) suggests that ice scouring is "reactivating 
an ancient topography virtually intact." The fractal dimen- 
sion (D = 1.45) founc1 at large scales for shield lakes may 
reflect large-scale features, such as the di'itribution of fracture 
zones. The fractal dimension changes f D - 1.15) a& a scale 
of measurement around 350 rn. This should be the scale at 
which the glacial corsasive processes caracel each other out 
and erc~sional processes predominate. The dependence of gla- 
cial corrasion and erosioraal processes on preexisting geologi- 
cal features found over a wide :area explaia~s the consistency 
of the two dimensions and the breakpoint in the variety of 
lakcs we measured. We predict that similar properties will be 
found for other irregular glacial scour lakes in different 
regions of the shield. 

Three other predictions of fractal theory were tested. The 
shoreline length- lake area relationship of equation 4 and the 
lake area dijtribution law of equation 5 gave independent 
estimates of the shoreline dimension D of 1.50 and 1.51. 
respectively. Thcse agree well with the large-scale D value of 
1 .44  found from the digitiaecl lakes. The nearshore area re- 
Intion of equation 8 independently estimated a D value of 
1.15, identical with the small-scale shoreline D value. The 
excellent agreement of these independent dimension estimates 
supports the kaypothcsis that fractal laws govern the structure 
of the lakes in a region. 

One consequence of the fractal structure of lakes is that the 
shoreline development index (eqra. 1) will be biased by lake 
size. If, as our data suggest, the ratio in equation 4 is constant. 
then shoreline develop~nent will increase with lake area. That 
85, if a lake were simply enlarged without changing its shape, 
the measured shoreline development would increase - in 
spite of the apparent correction for lake area which it 
incorporates. 

In our second data set, shoreline development ranged from 
3.1 to 11.7 and was significantly correlated ( P  < 0.001) with 
lake area. The ratio in equatnon 4, which represents a fractal 
measure of development, ranged from 0.9 1 to 1.28 and was 
unccmelated with lake area. So fractal indices eliminate 
problems of scale because they are independent of measuring 
scale and lake size. 

How can fractal naorphometric laws help explain lake 
biology? We feel that fractal indices help quantify the role of 
the littoral zone. Most lake fish spawn in the littoral zone. The 
prey of rnany game fish are restricted to the littoral zone. In 
their classification of Ontario lakes, Johnson et al. 6 1977) 
attempted to explain the presence of certain fish species basing 
IirnnologicaH factors. In their analysis, the first discriminant 
function essentially separated deep, oligotrophic trout lakes 
froan all others. However, the second discriminant function 
found the shoreline development index to be the most isn- 
portant of the physical factors. They interpreted this to be a 
raaeasure of lake size. We suggest that this f~nction might best 
be interpreted as a naeasure of nearshore habitat availability. 

If this is true then why isn't the percent littoral area seen as 
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a more important physical factor? As discussed above, the 
shallowest portions of the littoral zone. in particular weedy 
bays, may be dispropoflionatdy imporFant to many species as 
foraging sites. Percent littoral area may include deeper areas 
of less importance, cspeciaily in clear oligotrophic Bakcs. The 
fractal dirnension, om the other hand, is more concerned with 
the complexity of the shoreline, as it enaphasizes the am- 
portance of shallow waters. It allows for the separation of lake 
size effects from those due to nearshore habitat availability. 

A reason for the importance of littoral zones, cited by 
Wetzel( 1975), is the fast turnover of essential nutrients wherc 
decomposers are in close proximity to the prlmary producers. 
This increases the productivity of shallow waters. Thc fractal 
relationship between the area of a given zone and its mean 
width could help weight the contributions of shallow and 
deep-water regions in proportion to their net productivity. 
Such a weighting may be essential for a proper understanding 
of Barger oligotrophic lakes. In lakes with low nutrient lev- 
els, extensive littoral zones rnay increase productivity (Adams 
and Blver 1977). Johnson et al. ( 1977) found that oligotrophic 
lake\ with Bow Morpho-edaphic indices (ME1 , Ryder 1965) 
were more likely to contain walleye (St izc~~tecl ion ~itr~ntrlm 
r.btm~4ntj if the lakes were large. They proposed that "Barger 
Iakes, with low overall MEI, can have higher ME1 bays." 
Large Bakes are seen as a patchwork of regions with different 
ME1 values. The fractal dimension of ahc lake could be used 
to predict the distribution of these regions. 

Onc major theme in studies of lake morphology involves 
the vlew that the littoral zone is a patchy environment of 
varying extent, which has a disproportionate influence on the 
lake as a whole. The fractal propcrtieh of lake shorelancs and 
nearshore areas may eventually allow us to predict the distri- 
bution within a lake of high MEI arcas and to correct indice< 
of productivity for shoreline cffects. 

The fractal laws of basin rnorpholosy found above should 
extend to thc topography of entire drainage hasins. Erosional 
processes can produce fractal landforms (Leopold and 
Langbein 1962; Mandclbrot 1977). An allormaetric relationship 
exists between stream order and catchment area, stream 
length, maximum and mean discharge, etc. (Horton 194%; 
Leopold and Miller 1956; Hack 1957). A fractal meawrement 
law of river length holds for aBB but the largest rivers 
(Richardson 196 1). Therc should be a relationship between 
the fractal dimension of a stream course and the fractal dimen- 
sion of its watershed (Mandelbrot 1977). Therefore, in rc- 
gions where erosion has shaped the landforms, lakes fc~rmcd 
by in~poundment should show fractal shoreline laws predice- 
able from the fractal properties of nearby drainage systerns. 

Wc propose thcn. that in regions where previous landforms 
largely determine lake outline, terrestrial contour maps could 
be used to test fractal theory. Contour lines in valleys would 
be measured to determine their fractal pruprties. 'These could 
be compared to the area between successive contours. In this 
way the fractal area law could be checked when zoncs of' 
constant depth arc used. 

Because fractal laws can predict the distribution of areas trf 

different habitats (iakes, bays, islands), they should be im- 
portant in biogeographic models. By carefully documenting 
the statistical properties of landforna structaarcs. a first step can 
be taken towards quai~tifying habit ctamplexity. 
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