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The littoral zone is important in lake ecosystems. It affects physical, chemical, and
biological processes of the whole lake. We first describe patterns in the shoreline lengths of
a lake drawn from maps of different scales. Second, we show that these patterns or
“measurement laws’’ hold for many different lakes. We then use ‘“fractal’” measuring theory
to provide a unifying explanation of these empirical results. Fractal theory also makes new
predictions about the statistical properties of groups of lakes. Patterns in our data were
consistent with these predictions. Finally, we discuss how physical and geomorphological
processes can give rise to fractal patterns in the landscape.
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La zone littorale est importante dans les €cosystémes lacustres. Elie influe sur les
processus physiques, chimiques et biologiques du lac entier. Nous décrivons en premier lieu
la configuration de longueurs de lignes de rivage d’un lac dessinées a partir de cartes a échelles
différentes. Nous démontrons en second licu que ces configurations ou ‘*lois de mesures”
sont valables pour plusieurs lacs. Comme explication unifiant ces résultats empiriques, nous
faisons appel A la théorie de la mesure des «fractures». Cette théorie permet aussi de
nouvelles prédictions quant aux propriétés statistiques de groupes de lacs. Nos données
s’accordent avee ces prédictions. Finalement, nous examinons la fagon dont ces processus

physiques et géomorphologiques produisent des fractures dans le paysage.
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THIS paper demonstrates how two physical properties of
lakes, shoreline length and littoral area, can be accurately
characterized. The resuits are used to predict how shoreline
length changes with lake area. These relationships can also
predict the distribution of lakes of different size-classes.
Implications for the biological processes in the lake are dis-
cussed.

Shoreline and littoral propertics are known to have im-
portant predictive value in biological relationships (Rigler
1973; Barsdate et al. 1974). Simple, empirical indices of
littoral extent have been used to classify diverse lakes and to
evaluate the importance of their littoral areas. One of the
oldest morphometric -indices is the shoreline development
index, defined as

(1) D, =L/VAnA

where L is the measured shoreline length, and A is the lake
area. A circle gives an index of I: larger values should indi-
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cate more convoluted figures.

The development index has been used to relate nutrient
loading in a lake to the length of its shoreline (Seppanen 1972;
quoted in Dillon and Rigler 1975). It has also been used in
statistical studies of fish community structure (Johnson et al.
1977). However, there is a paradox associated with the caicu-
lation of the index. While the total area of the lake can be
measured fairly accurately, the measurement of circum-
ference is more arbitrary. Measured lengths are dependent on
cither the detail of the map or the accuracy of the measuring
instrument used. Shoreline lengths that we have determined
by remeasuring detailed maps may be as much as 100%
greater than published vaiues. We need to know how finer or
more detailed scales of measurement change overall iength
estimates.

The relationship between length and scale of measurement
was first explored by Richardson (1961) for curves such as
coastlines. A theoretical basis for his findings was provided
by Mandelbrot (1967). The surprising result of these investi-
gations was that the measured length of the curve did not
reach an asymptotic, maximum value, but continued to in-
crease with finer and finer scales of measurement. Further-
more, the relationship between measured length and the scale
of measurement was allometric. This implies that these curves
do not have a well-defined length. In practice, it means that
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TaBLE 1. The latitude, longitude, and the scale of the map from
which the lake outline was digitized, for the lakes used in this study.

Lake Latitude Longitude  Map scales used
Big Duck Lake 44°51’ 78°57' 1:50 000
Bob Lake 44°55' 78°47 1:50 000
Crotchet Lake 44°57' 78°56’ 1:56 000
Gull Lake 44°51’ 78°47" 1:50 000
1:125 000
Lake Kawagama 45°18' 78°45' 1:50 000
1:125 000
1:500 000
Muskoka Bay 44°56' 79°24’ 1:25 600
1:500 000
Smudge Lake 44°49’ 78°58' 1:50 000
Thrasher Lake 44°55' 78°59' 1:50 000

length determinations for different lakes will only be com-
parable if performed with the same level of detail, that is using
the same scale of measurement. The length of a shoreline is
then a scale-dependent quantity. This result is unsatisfying in
that we cannot determine indices such as shoreline develop-
ment independently of some arbitrary scale of measurement.

Mandelbrot (1977) explores the properties of highly con-
voluted shapes, of which river courses and coastlines are but
two examples. He proposes an index which can be used to
mcasure their degree of convolution. This index is called the
fractal dimension. The fractal dimension can be determined
empirically whenever there is an allometric relationship be-
tween the scale of measurement and the length measured at
that scale. For a smooth curve, the fractal dimension D is 1;
for more convoluted curves, D is between | and 2. It is
determined as

2) D=1 —-m
where m is the slope of the allometric relationship:
(3) logfL(s)] = m X log[s] + a

where L(s) is the length measured at a scale s.

Mandelbrot (1977) also predicts that lake area A and shore-
line length L will be related for lakes with the same fractal
dimensions D by the equation:

(4) ¢, = LY°/VazA; or In(L) = ¢, + (D/2) In(A).

The ¢’s are constant terms. Note that when D > 1, shorcline
development is a biased measure of lake shoreline complex-
ity. It will increase with lake size even for lakes with the same
shape or shoreline complexity.

A third “*fractal’” law, known as Korcak’s law, is noted by
Mandelbrot (1977). If F(A) gives the fraction of lakes in a
region with area greater than A, lakes with fractal shoreline
dimension D should satisfy the equation:

(5) F(A) = kAP,

So there are several ways to test for fractal patterns in lake
structure. We tested the applicability of the fractal measuring
concept to Ontario lakes by investigating the relationship be-
tween shoreline complexity and littoral zone structure.

GULL LAKE

FiG. 1. Gull Lake as drawn by computer from digitized shoreline
coordinates.

Materials and Methods

Maps at several different scales (1:25 000—1:500 000)
were obtained for Canadian Shield lakes in the Muskoka and
Haliburton regions of Ontario (Table 1). Lake shorelines were
digitized on a Ruscom Co-ordinate Digitizer and stored as a
series of x—y coordinates. The x—y coordinates fell within
0.5 mm of the original map outlines. The x—y coordinates
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FiGc. 2. Two computer-drawn outlines of a section of Lake Ka-

wagama. Below each figure is the scale of the original map from
which each shoreline was digitized.

were joined to represent the digitized shoreline (Fig. 1). To
measure a lake at a given scale s, a chain of connected line
segments, each of fixed length s, was superimposed on the
computer map so that: (a) the endpoints of cach segment fell
on the digitized shoreline; (b) shoreline path between end-
points was minimal. The measured length was then the num-
ber of line segments used times the Iength, s, of each segment.
A correction was made to the length of the final segment so
that the endpoints met. The measured length was affected by
the starting point, so the procedure was replicated several
times, using different starting points. This procedure is anal-
ogous to overlaying a chain with links of length s on the
digitized shoreline, the ends of each link touching the shore-
line, and then measuring the length of chain used.

Lake lengths were measured at scales, s, ranging from the
smallest compatible with map detail to approximately one
fifth of the length of the digitized shoreline. For certain lakes,
several different maps were used. These maps had been drawn
at scales ranging from [:25 000 to [:500 000. Digitized
shorelines were obtained from each map. This additional in-
formation enabled us to evaluate the effect of map detail on
the measuring procedure.

We tested the relationship (eqgn. 4) between shoreline
length and lake area by using a second data set, morphometric
data on 21 lakes from the Lake Ecosystem Working Group.
These lakes cover a somewhat wider region than the eight
digitized lakes. As the shoreline Iength determinations were
all taken from maps drawn at the same scale, we felt that these
lengths were comparable.

To test the validity of Korcak’s law, a third lake data set
taken from Cox (1978) was used. Numbers of lakes with areas
between 1—9 ha and 10—99 ha (Cox’s size-classes V andV1)
in several watersheds covering the study arca (HF, HH) were
used to fit equation 5.

Levels of detail on the above maps were not adequate to
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Fic. 3. The natural logarithm of the measured shoreline length

(metres) is plotted against the natural logarithm of the scale of mea-
surement (metres) for Lake Kawagama. Three -different digitized
representations of the same length of shoreline were produced. The
x's show results from using a !:500 000 map. the closed circles a
1:125 000 map, and the open circles a 1:50 000 map.

determine littoral zone areas, so an aerial photograph of
Christie Lake (S. Ont.} with a scale of 1:7700 was digitized
and measured as before. A series of zones was defined. Each
zone consisted of all points within a fixed distance of shore.
The areas of these zones werc determined by planimetry. This
constituted our fourth data set.

Results
MEASUREMENT LAWS OF SHORELINE LENGTHS

Figure 2 shows the digitized outlines of a portion of Lake
Kawagama taken from maps with scales 1:125 000 and
1:50 000, respectively. Figure 3 shows the results of the
measuring procedure on Lake Kawagama for three different
digitized shorelines. Intuitively, one would expect that the
measured length would increase as the scale of measurement
decreases. This is verified by the data, as there is a significant
negative correlation between the measured shoreline length
and the scale of measurement (> = 0.85). If we tentatively
entertain the hypothesis that lake shorclines follow fractaf
laws, we can make two types of predictions. We may find that
we can extrapolate from large-scale to fine-scale mcasure-
ments. Secondly we may find that lakes in the same geologi-
cal province are similar in their shoreline structure. They
should have the same fractal dimeasions.

From Fig. 3, we can see that shoreline length is not de-
scribed by a simple allometric relationship. While the mea-
surement data for the largest scale map is linear within its
range, the data for both the 1:50 000 and 1:125 00 scale
maps show a significant lack of fit to a single linear model.
This means that we cannot extrapolate to finer scales in order
to predict fine-scale shoreline lengths. However, our second
prediction appears to hold as all of the lakes show a similar
pattern (Table 2). This pattern involves a second linear or
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TABLE 2. Large- and small-scale slopes. log breakpoint (metres) GULL LAKE
from best fitting two-line regressions for each lake.
Slopes . 3
_ Breakpoint \,
Lake Large scale Smali scale (m} \
1034

Big Duck Lake ~0.64 -0.13 255
Bob Lake —0.44 ~0.16 482 \“\
Crotchet Lake - —0.28 —0.12 178
Gull Lake —-0.27 —-0.10 354 u o\,
Lake Kawagama —(.45 ~0.12 354 z
Muskoka Bay —0.44 -0.16 459 6
Smudge Lake —0.55 -0.16 255 5 0o o
Thrasher Lake —0.43 -0.16 482 = 'Y

—
fractal relationship valid at finer scales of measurement. We \
therefore propose a modification to cur first prediction. o7l

Suppose the shoreline of a lake is formed by at least two

different geomorphological fractal processes. Each process — . \ ¢
modifies the shoreline, but at different scales. If we measure 40 60 80

the shoreline at the scales at which the effects of only one
process predominate, then we find a single fractal law. If we
had two processes working at two different scales. then the
resulting measurement curve would have two parts. These
two line segments would be joined at the characteristic scale
or breakpoint separating the two processes. If the same pro-
cesses are operating on all of the lakes in our study arca, then
the line segments should all bend at the same scale.

To test this model, the data was partitioned into two sets,
consisting of measurcments at scales above or below a scale
called the breakpoint. A separate line was fitted to each set.
We repeated this procedure, varying the breakpoint. We
recorded the breakpoint for which the regressions fit best. The
results are shown in Table 2.

This analysis revealed several patterns. (A) The two-line
model fit very well for each lake. (B) The slopes of the upper
and lower line segments fell into two different and distinct
regions. Within each region the slopes showed remarkable
consistency. {C} Two processes were sufficient to explain all
the measured relationships, and these processes were all
separated at similar scales or breakpoints. For each lake the
two-line mode! explains significantly more variance than the
one-line model. The large-scale lines correspond to fractal
dimensions clustering around a mean value (x %= 2 Sg) of
1.44 = 0.09, while the dimensions at the fine scales cluster
around 1.14 = 0.02. The breakpoint has a mean value of
350 m * 90 m.

MAPPING INACCURACIES

We then checked to see if the relationships were a result of
the mapping procedure used, rather than natural properties of
the lakes themselves. This was why we measured Lake
Kawagama shoreiines from maps at three difterent scales. The
same procedure was also applied to Gull Lake. The results for
Lake Kawagama are shown on Fig. 3 and for Gull Lake on
Fig. 4. Although the original scales of the maps differ greatly,
there is a remarkable consistency in the results. Measurements
taken from crude.large-scale maps overlap the measurements
taken from fine-scale maps. Therefore the results summarized
in Table 2 are independent of mapping inaccuracies.

LN SCALE OF  MEASUREMENT

FiGc. 4. The natural logarithm of the measured shoreline iength
(metres) is plotted against the natural logarithm of the scaie of mea-
surement (metres) for Guil Lake. Two different digitized representa-
tions of the lake were used. The closed circles show the results from
using a 1:500 000 map, the open circles a 1:50 000 map.

LAKE AREA VERSUS SHORELINE LENGTH

The relation between shoreline length L (measured at a
fixed scale) and lake area A was determined by a linear re-
gression of In(L) on In(A). Equation 4 predicts that the slope
of the fitted relationship will be half the fractal dimension
D. For the 21 lakes in our second data set, the regression
was highly significant; (1> = 0.94, F .10, = 268, P < 0.001)
the value of D was estimated to be 1.50 + 0.18 (Fig. 5). This
agrees with the large-scale shoreline dimension .44 £ 0.09
found carliecr. When lakes from regions outside our study
area (Parry Sound, Sudbury) were included, the estimated
value of D rose to 1.59 = 0.18 (¥’ = 0.91, Fp.4, = 305,
P < 0.001).

DISTRIBUTION OF LAKE AREAS

We also calculated the fractal dimension D from Korcak's
law (cqn. 5) by using the relation:

(6) logio{( F(A) —~ F10A)/(F(10A) — F(100A)} = D/2.

When the value of A is taken to be 1 ha. the numerator and
denominator above are just the numbers of lakes in size-
classes V and VI in our third data set. The resuits are shown
in Table 3. For the watersheds covering the central portion of
our stady area (2HF and 2HH), D was estimated to be 1.51,
in agreement with our previous estimates. Other watersheds
gave higher D values; the mean for five watersheds was
1.64 = 0.11. Thesc increased values behave like those found
when equation 4 was applied to lakes from the north and west
of our study area.
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FiG. 5. The natural logarithm of lake area (km’) is plotted against the natural logarithm of the measured

perimeter of the lake (km) for 21 lakes in our study area. From the slope of this regression we are able to
caiculate an independent estimate of the average fractal dimension of the shoreline for lakes in this area.

TaBLE 3. Areal distribution of lakes in watersheds: a test of Korcak’s law.
Number of lakes in size-class | .
Estimate of D
Watershed® LEWG lake group V (10-99 ha) VI(1—9 ha) fromeqn. 6
2HF+2HH Kawartha, Muskoka 75 426 1.51
2KB+2KD Algonquin 138 724 163
2DD+2CF North Bay, Sudbury 150 1022 .66

“Watersheds from Cox (1978). The correspondence between Cox’s watersheds and the

LEWG lake groupings is approximate.

FRACTAL SCALING OF NEARSHORE AREAS

Finally, we c¢xamined how littoral area relates to shoreline
complexity. As detailed lake contour maps were not available
at the scale at which we were working, we decided to test the
simpler relationship of shoreline length to *‘nearshore’ arca.
Specifically, we measured the area of zones within a given
distance w of the shore. If the zone had smooth edges of
length L then the arca would approximately be equal to
L X w. However, we have shown that the length L depends
on the scale at which the shoreline is measured according to
equation 3, or setting the scale s equal to w:

(7Y L{wy =cxw™"

where ¢ is a constant and D is the fractal dimension. The arca

as a function of the width w of the zone would then be given
by

(8) A(w) = L{w) X w
AW = X w2 Xw=cxuP

For smooth curves, D is equal to 1. The constant ¢ is then
the length of the curve. The adjacent area is linearly propor-
tional to the width of the zone. For fractal shorelines, D is
greater than 1. Thus, in very convoluted lakes the shallowest
parts of the littoral zone, the small bays and coves, make up
a greater proportion of the zone than in less-convoluted lakes.

The heuristic argument {cading to equation 8 gives a formu-
la identical with that given by the Minkowski—Bouligand
dimension law (Mandelbrot 1977). We wanted to see if these
two relationships gave the same fractal dimension.
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FiG. 6. The relationship between the width of the littoral zone (m)

and its area (m”) for Christic Lake. The broken line represents the
expected relationship if the fractal dimension was equal to one. The
open circles show the measured relationship (£2 SE).

Figure 6 shows the relationship between the width of the
zone and the measured area for Christie Lake. The fractal
shoreline dimension calculated from equation 5 was 1.149.
When we regressed log(area) on log{width) we obtained a
slope of 0.85 (#* = 0.99). This is significantly different from
aslope of one ( F(; ) = 22.5, P < 0.001). Using equation 8,
we compute a fractal dimension of 1.15. Although this is but
a single example, the cxcellent agreement between the values
is highly suggestive.

Discussion

How do the fractal properties of lake shorelines contribute
to our understanding of lake structure and biology? The shore-
line development index is of *‘considerable intcrest because it
reflects the potential for greater development of the littoral
communities in proportion to the volume of the lake™” (Wetzel
1977). But as Hutchinson (1957) points out, shorcline length
“depends on the fineness of detail of the map and for this
reason the values obtained on maps of different scale . . . may
be somewhat different.”” Thus shoreline development
“*suffers from the same sources of uncertainty as measure-
ments of length”” (Hutchinson 1957). The determination of
a fractal measurement law overcomes this difficulty by
demonstrating a common basis for intcrpretation of shoreline
measurements.

L.AKE STRUCTURE

Our data supported the hypothesis that lakes in the same
region show similar fractal properties. Two fractal laws held
at large and small scales separated by a breakpoint at a scale
of about onc third of a kilometre. How might this have come
about?

CAN. 1. FISH. AQUAT. SCL., VOL.. 39. 1982

Our lakes fall into Hutchinson’s geomorphological type 26,
in which glacial action has removed softer rock overburden
and differentially deepened rock basins in zenes of fracture
and shatter belts (Hutchinson 1957). Ambrose (1964; quoted
by Chorley 1969} suggests that ice scouring is “‘reactivating
an ancient topography virtually intact.”” The fractal dimen-
sion (D = 1.45) found at large scales for shield lakes may
reflect large-scale features, such as the distribution of fracture
zones. The fractal dimension changes (D = 1.15) at a scale
of measurement around 350 m. This should be the scale at
which the glacial corrasive processes cancel each other out
and erosional processes predominate. The dependence of gla-
cial corrasion and erosional processes on preexisting geologi-
cal features found over a wide arca explains the consistency
of the two dimensions and the breakpoint in the variety of
fakes we measured. We predict that similar properties will be
found for other irregular glacial scour lakes in different
regions of the shield.

Three other predictions of fractal theory were tested. The
shoreline length—lake area relationship of equation 4 and the
lake area distribution law of equation 5 gave independent
estimates of the shoreline dimension D of 1.50 and .51,
respectively. These agree well with the large-scale D value of
1.44 found from the digitized lakes. The nearshore area re-
lation of equation 8 independently estimated a D value of
1.15, identical with the small-scale shoreline D value. The
excellent agreement of these independent dimension estimates
supports the hypothesis that fractal laws govern the structure
of the lakes in a region.

One consequence of the fractal structure of lakes is that the
shoreline development index (eqn. 1) will be biased by lake
size. If, as our data suggest, the ratio in equation 4 is constant,
then shoreline development will increase with lake arca. That
is, if a lake were simply enlarged without changing its shape,
the measured shoreline development would increase — in
spite of the apparent correction for lake area which it
incorporates.

In our second data set, shoreline development ranged from
3.1 to 11.7 and was significantly correlated (P < 0.001) with
lake area. The ratio in equation 4, which represents a fractal
measure of development, ranged from 0.91 to 1.28 and was
uncorrelated with lake area. So fractal indices eliminate
problems of scale because they are independent of measuring
scale and lake size.

COMMUNITY STRUCTURE

How can fractal morphometric laws help explain lake
biofogy? We feel that fractal indices help quantify the role of
the littoral zone. Most lake fish spawn in the littoral zonec. The
prey of many game fish are restricted to the littoral zone. In
their classification of Ontario lakes, Johnson et al. (1977)
attempted to explain the presence of certain fish species using
timnological factors. In their analysis, the first discriminant
function esscntially separated decp, oligotrophic trout lakes
from all others. However, the second discriminant function
found the shorcline development index to be the most im-
portant of the physical factors. They interpreted this to be a
measure of lake size. We suggest that this function might best
be interpreted as a measure of nearshore habitat availability.

If this is true then why isn’t the percent littoral area seen as
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a more important physical factor? As discussed above, the
shallowest portions of the littoral zone, in particular weedy
bays, may be disproportionately important to many species as
foraging sites. Percent littoral area may include deeper areas
of less importance, especially in clear oligotrophic lakes. The
fractal dimension, on the other hand, is more concerned with
the complexity of the shorelinc, as it emphasizes the im-
portance of shallow waters. it allows for the separation of lake
size effects from those due to ncarshore habitat availability.

LITTORAL PRODUCTIVITY

A reason for the importance of littoral zones, cited by
Wetzel (1975), is the fast turnover of essential nutrients where
decomposers are in close proximity to the primary producers.
This increases the productivity of shallow waters. The fractal
relationship between the area of a given zone and its mean
width could help weight the contributions of shallow and
deep-water regions in proportion to their net productivity.
Such a weighting may be essential for a proper understanding
of larger oligotrophic lakes. In lakes with fow nutrient lev-
els, extensive littoral zones may increase productivity (Adams
and Olver 1977). Johnsen et al. (1977) found that oligotrophic
fakes with low Morpho-edaphic indices (MEI, Ryder 1965)
were more likely to contain walleye (Stizostedion vitreum
vitreum) if the lakes were large. They proposed that “*larger
lakes, with low overall MEl, can have higher MEI bays.”’
Large lakes are seen as a patchwork of regions with different
MEI values. The fractal dimension of the lake could be used
to predict the distribution of these regions.

One major theme in studies of lake morphology involves
the view that the littoral zone is a patchy environment of
varying extent, which has a disproportionate influence on the
lake as a whole. The fractal properties of lake shorelines and
nearshore areas may eventually allow us to predict the distri-
bution within a lake of high MEI arcas and to correct indices
of productivity for shoreline cffects.

EXTENSIONS AND APPLICATIONS OF FRACTAL CONCEPTS

The fractal laws of basin morphology found above shouid
extend to the topography of entire drainage basins. Erosional
processes can producc fractal landforms (Leopold and
Langbein 1962; Mandelbrot 1977). An allometric relationship
cxists between stream order and catchment area, stream
length, maximum and mean discharge, etc. (Horton 1945,
Leopold and Miller 1956; Hack 1957). A fractal measurement
law of river length holds for all but the largest rivers
(Richardson 1961). Therc should be a relationship between
the fractal dimension of a stream coursc and the fractal dimen-
sion of its watershed (Mandelbrot 1977). Therefore, in re-
gions where crosion has shaped the landforms, lakes formed
by impoundment should show fractal shoreline laws predict-
able from the fractal properties of nearby drainage systems.

We propose then, that in regions where previous landforms
largely determine lake outline, terrestrial contour maps could
be used to test fractal theory. Contour lines in valleys would
be measured to determine their fractal properties. These could
be compared to the arca between successive contours. In this
way the fractal area law could be checked when zones of
constant depth are used.

Because fractal laws can predict the distribution of areas of

differcnt habitats (lakes, bays, islands), they should be im-
portant in biogeographic models. By carefuily documenting
the statistical properties of landform structures. a first step can
be taken towards quantifying habit complexity.
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